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Abstract

The steady state pressure structure of a coronal loop is discussed in terms
of the MHD global invariants of an incompressible plasma. The steady state is
represented Dby the superposition of two Chandrasekhar-Kendall functions
corresponding to (n=m=0) and n=m=1) modes. The relative contribution of the two
modes («€) is found to depend on the surface pressure of the coronal loop which is
also the pressure of the external medium. The mixed mode state does not exist for

high values of the external pressure because € becomes complex.

Steady State Model of Coronal Loops

The coronal loop is represented by a cylindrical column of plasma with
periodic boundary conditions at the ends of the cylinder (z=0,L). The pressure
(p) profile of an incompresible MHD plasma is given by

- s -

v2p = v.[(V x B) x B] - V.[(V.V)V] (1)

where V, B are respectively the velocity and the magnetic field. The magnetic
field B is defined in Alfven speed units 1i.e. B = Bl|vanp. The
Chandrasekhar-Kendall representation of the velocity and magnetic fields is given

in terms of Bnm where m is the azimuthal mode number and n is the axial mode
number.

Boo = €0%0%[€eroT1(Y0r) + €x00T0(¥o¥)] (2)
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Substituting these fields in equation (1), one can solve for the pressure profile
in various cases. Ag 1is determined from the constancy of the ratio of the

toroidal invariant ¥ to the poloidal one Y, a8 , 5 (4 g)

t R l O
£ -4f 10 (4)
\VP L Jo(YQR)

where R is the radius of the loop. 1 is determined from the boundary conditions

B, = 0 at r=R. For a rigid perfectly conducting wall at r = R;

r
Rk, Ynm I YnmR) + Mo I YpmR) = O (5)

The pressure profile in the state (00 + 11) is given as:

E—gzgg =gy + 6 € g, cos(6+kyz) - 2¢*[g,coB?(0+Kk,2)
+ g3 cos(2042k,z) + g, sin®(e+k;2) - ggl (8)
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Here p = py at r = 0, z = 0; c's are normalization constants.

An example
L., ¥ o) gives YoR = 1
R wp
and
MR = 3.11, ‘le = 2.85, klR = 1.25,
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Total Energy, Magnetic Helicity and determination of e.
The total energy W for (00 + 1l1) state per unit length is

A ~
2(YoR) (Fg + € X% F,) Hm?

& = ’
(Fo + «*Fy)* w:

The magnetic helicity per unit length ;m\ is

= 2
Ve

And the quantity,

R) - N z
[ = (PelR) ~ Po) ‘”t=Go+eG1+eG2
P (Py + €®Fp)*

Por a fixed E, "’t/"’p' n, m. Gy, Gy, Gy, Fo and F, are functions of y,R and
¥R and completely determined. Therefore I is a function only of €. & can be
determined from the following (approximate) equation:

3 + 3 2 4 2 2 ":‘
FIE)
12IF,F,
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A plot I vs ¢ is shown which shows that as the external pressure decreases, €

increases. For I > 9.9, € becomes complex.

Wt is also plotted against I for the axisymmetric and the mixed mode state.

The m=0 curve is obtained by varying the ratio R/L and keeping wt/\vp fixed. YyoR
increases as L/R increases and 1 also increases. For fixed L, 1 increases as R
decreases, in other words smaller loops are in a medium of higher external
pressure, which is as it should be. At a certain value of the external pressure
the mixed mode state is energetically more favourable than the m=0 state. Thus
there is a transition from m=0 state to (m=0 + m=l) state as the loop moves
outwards in the corona in a medium of decreasing external pressure. The inner
presure variation conforms to an increase of temperature along the axis from z=0,
to z=L. The radial variation of temperature at the top of the loop confirms to
the cool core and hot sheath model. Thus depending upon the position of the loops
in the corona, one may observe them to be either in the m=0 state or (m=n=l) +

(m=n=0) gtate and therefore the corresponding temperature variations are
observed.
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